Санкт-Петербург: 8-812-402-70-55
Москва: 8-495-125-70-55

info@reductory.ru
Название организации:
Имя:
Номер телефона:
Email:
Город:
Адрес доставки:
Требуемая продукция:
ОтменаПодтвердить

§ 16.4. Основы теории жидкостного трения

Для работы подшипника самым благоприятным режимом является режим жидкостного трения. Образование режима жидкостного трения является основным критерием расчета большинства подшипников скольжения. При этом одновременно обеспечивается работоспособность по критериям износа и заедания.
Основы теории жидкостного трения. Исследование режима жидкостного трения в подшипниках основано на гидродинамической теории смазки. Эта теория базируется на решениях дифференциальных уравнений гидродинамики вязкой жидкости, которые связывают давление, скорость и сопротивление вязкому сдвигу.
i_16_4.jpg
 
На рис. 16.4 показаны две пластины А и />, залитые маслом и нагруженные силой F. Пластина А движется относительно пластины Б со скоростью νΑ. Если скорость vA мала (рис. 16.4, а), то пластина А выжимает смазку с пластины Б. Поверхности пластин непосредственно соприкасаются. При этом образуется полужидкостное трение.
При достаточно большой скорости vA (рис. 16.4, б) пластина А поднимается в масляном слое и принимает наклонное положение, подобно тому, как поднимаются глиссер или водные лыжи, скользящие по воде.
Между пластинами образуется сужающий зазор, заполненный маслом, а движение происходит в условиях жидкостного трения. Переход к режиму жидкостного трения происходит при некоторой скорости, называемой критической υκρ. Рассмотрим физику этого явления.
На рис. 16.4, б, в одном из сечений слоя жидкости в зазоре, изображена эпюра скоростей жидкости. В граничных точках слоя скорости равны скоростям пластин А и Б. Во всех промежуточных точках скорости меньше скорости νΑ пластины А. Пластина А набегает на жидкость и прогоняет ее через сужающийся зазор. Этот процесс будет еще яснее, если рассмотреть обращенное движение пластин. Для этого сообщим всей системе обратное движение со скоростью vA. Интересующее нас относительное движение пластин при этом не изменится, но в обращенном движении пластина А остановится, а пластина Б будет двигаться
со скоростью υΑ в обратном направлении (рис. 16.4, в). Эпюры скоростей в обращенном движении изображены на рис. 16.4, в для нескольких сечений. Форма этих эпюр будет обоснована в дальнейшем с помощью соответствующих уравнений. Здесь по направлению скоростей ясно, как жидкость запрессовывается под пластину А и прогоняется через зазор.